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EDF TESTS OF FIT FOR THE LOGISTIC DISTRIBUTION 

by 

M. A. Stephens 
Department of Mathematics 
Simon Fräser university 

SUMMARY 

In this paper we present goodness of fit tests for the logistic 

distribution, based on statistics calculations from the empirical distribution 

2  2       2 
function.  Emphasis is on the statistics W , U  and A , for which asymptotic 

percentage points are given, for each of the three cases where one or both 

of the parameters of the distribution must be estimated from the data.  Slight 

modifications of the calculated statistics are given to enable the points to be 

used with small samples.  Monte Carlo results are included also for statistics 

D , D , D and V . 

Some key words:  Cramer-von Mises statistics; Empirical distribution function; 

goodness-of-fit; Kolmogorov-Smirov Statistics; logistic distribution. 

INTRODUCTION 

In this paper we discuss the test of fit of H : that a 

random sample of n values of x comes from the logistic distribution 

F(x) = 1/[1 + exp{-(x-a)/ß}]     -°° < x < °° (1) 

with one or both of the parameters a and  ß possibly unknown. 

The tests given are based on statistics which measure the discrepancy 

between the theoretical distribution function (1), with estimates inserted for 



any unknown parameters, and the empirical distribution function (EDF) of 

2  2       2 the sample.  Emphasis is placed on the statistics W , U  and A  , for 

which asymptotic theory is derived;  the theory is supported by Monte Carlo 

results to give percentage points for finite n .  These tests are described 

in Sections 2 to 6.  In Section 7, some Monte Carlo results are given for the 

Kolmogorov and Kuiper statistics D , D ,  D and V, for no which nö asymptotic 

theory is available. 

In deriving the asymptotic distributions of the statistics 

2  2       2 
W , U  and A  , the asymptotic theory of the empirical process is used.  This 

is now very well known (see e.g. Durbin, 1973) and only the details applicable 

to the logistic distribution (1) will be repeated.  The plan of the paper closely 

follows that of Stephens (1976), which was concerned with tests for normality 

and exponentiality, and in which much greater detail is given of the steps in 

the calculations. 

2.  THE GOODNESS OF FIT TESTS. 

The null hypothesis H  is that the sample of x-values is a random 

sample from the logistic distribution (1).  It will be convenient to suppose 

the sample is then labelled in ascending order, i.e., x, < xp < • • • < x . 

Four test situations may be distinguished, parallel to those in 

Stephens (1974, 1976, 1977):  case 0, where both a and ß are known, so that 

F(x)  is completely specified; case 1, where ß is known and a is to be 

estimated; case 2, where a is known and ß is to be estimated; case 3, 

where both a and ß are unknown, and must be estimated. 

Suppose that the parameters are estimated from the sample by maximum 

likelihood; the estimates, for Case 3, are given by the equations 



n"1 2.[1 + exp{(x.-a)/ß}]"  =0.5 (2) 

x.-a   1 - exp{(x.-a)/3) 
n_1i:.(^—)    ^-^    = -1 (3) 

1 3     1 + exp{(x.-a)/ß} 

These two equations may be solved iteratively; suitable starting 

values for a and $    are aQ  = x and 3 = s ,  where x and s2  are 

respectively the sample mean and variance.  In case 1,  3  is known, and (2) 

is used for a with  3  replacing  3 .  In Case 2, a is known; ß is given 

by solving (3) with a replacing a . 

When the parameters have been estimated as necessary, the steps 

in testing H are as follows: 

(a) Calculate  z. = F(x.),  where F(x)  is given in (1), with the 

appropriate estimates inserted for unknown parameters in cases 1, 2 or 3. 

The  z.  will now be in ascending order.  Let z be the mean of the  z. . 

(b) Calculate the test statistic desired: 

„2       v ,    2i-1.2    1    2   2    -  1.2. 
W = E . (z. —  + —— ; U = W - n(z - —) J 

li   2n     12n 2 

A2 = - [E.(2i-l){log z. + log(l - z .    .)}]/n-n . 
l l n+l-i 

(c)  Refer to Table 1, first calculating the modified statistic and 

then comparing the result with the upper tail points given in the table, for 

the appropriate case.  For example, suppose that with a sample of size 20, Case 2, 



2 
the value of    A     is    2.150j    the modification involves calculating 

(0.6)(20)(2.150)-1.8    for the numerator,  giving the value 2^.0 and  (0.6)(20)-1.0 
2 

for the denominator,  giving value 11.Oj  the resulting modified A   is 2.182, 

which would be significant at about the 6/0 level.    The modifications make only- 

slight changes to the given value of a statistic, but they make it possible 

to dispense with tables of points for each    n. 

3.  ASYMPTOTIC THEORY OF THE TESTS. 

We first discuss the asymptotic theory of the empirical process; 

this is defined as  y (z) = /n(F (z) - z)  where F (z)  is the EDF 
n n n 

of the set z^  .  Asymptotically yß(z) tends to a Gaussian process 

y(z),  defined for 0 < z < Ij the mean of this process is zero, 

and values y(0) and y(l) are fixed, equal to zero; the covariance function of the 

process depends on the distribution tested and the parameters estimated.  When 

the parameters are location and scale parameters, as are a and ß for 

distribution (1), and when these are estimated by asymptotically efficient methods, 

the covariances are straightforward to find, and are independent of the true values 

of the parameters.  The type of calculation is shown in defcail in Stephens (1976, 

1977). 



First the functions g^s) = Ss/5a and g2(s) = ßs/6ß  are required, where 

s = F(x) - Since the final covariances do not depend on the 

parameters, a and ß will be assumed to be 0 and 1 respectively.  For 

distribution (1) the functions are 

g (s) = s(s-l); g (s) = s(s-l) ln{(l-s)/s}. 

The covariances of the asymptotic empirical process are then found 

to be 

Case  0:     p   (s,t)   =  s -   st 

0 <  s < t < 1 
Case 1: p (s,t) = p (s,t) - <$> (s) cj^ (t) 

Case 2: P2(s,t) = p (s,t) - <J>2 (s) cj>2 (t) 

Case  3:     p   (s,t)   =  pQ(s,t)   -  (j^ (s) cj^ (t)   -  i?2 (s) cf>2 (t) 

2   1/2 
where     $   (s)   =       /3  g   (s)     and    <(>   (s)   =   {3/(3+ IT  )   7   }g   (s) .     The  covariance 

y\ /\ 

for case 3 takes a relatively simple form because the estimates a and ß 

are asymptotically uncorrelated. 

2 
The asymptotic distribution of W  , for any of the cases 0,1,2 or 3, 

may then be expressed as 

2 
oo   U. 

W =   Z  j±- (4) 
i=l  i 

where  u  are independent standard normal variables, and where for case j, 

the weights  A.  are the eigenvalues of the integral equation 

f(s) = X     I  p. (s,t) f(t) dt . (5) 
J0 3 

2 
Asymptotic points for W  are therefore found by solving  (5) 

for the weights X^   ,   and then calculating the percentage points of the 

distribution (4). 



4. CALCULATION  OF  THE  WEIGHTS. 

The weights    X. are found as follows.     Let    0 <  Xn   <  X„  <  ... 
l 12 

be  the weights  and     f   (x) , f   (x) ,   ...     be  the  associated normalized eigen- 

functions  for  case  0.   For W  ,   these are     X.   = IT i       and    f.(x)   =  /2   sin(Trix) 

Set 

DQ(X)  = ILU-XJ   . 

Expand <}> (x) = E.a.f.(x)  and (j) (x) = E.b.f.(x), so that 

a. = 
l 

r 
$   (x)fi(x)dx, b =  I  4>2(x)f (x)dx. 

—00 '    

Let 

2 v.2 
a. b. 

S (X) =1 + XE. -r^r— , and S,_ (X) = 1 + XE. T^- . 
a 1 A-A. b 1 A-A. 

1 1 

In general, the X.  of cases 1 and 2 are then given by setting the Fredholm 

determinant to zero; this implies, for case 1, solving D (X)S (X) =0, 
U      cl 

and for case 2,  D (X)S (X) = 0.  For the distribution (1), ^.(s) = (j) (1-s) 

and <j>2(s) = -^(l-s);  it follows that a. = 0  for  i an even integer, 

and b± = 0  for  i an odd integer; thus  a.b. = 0  for all  i .  When this 

occurs the weights for case 3 are solutions of T(X) = 0, where 

T(X) =* DnU)-SaU)S. (X). 
U     cL     D 



2 For W oase 1, because a. =0, the value  A = A.,  for  i 
i l 

even, is a solution of D (A)S (A) = 0; but for i odd, the term A - A. 
0   a i 

in D (A) cancels the denominator in the term in  S (A)  containing a. , and 0 a i 

the product D„(A. )'S (A.)  is not zero.  Thus solutions for case 1 contain 0  l a  l 

the set  A., i even, and another set of  A values which are the solutions of 

S (A) =0 .  Similarly for case 2, solutions of D„(A)S, (A) =0 consist of 
a Ob 

two sets:  A = A., i odd, and another set, the solution of S, (A) = 0. 
i b 

It follows that for case 3 the solutions of T(A) = 0 do not contain 

any of the standards - A., but only the values A satisfying S (A) =0 and 
1 a- 

S, (A) = 0 which have already been found for cases 1 and 2. 

2 
The statistic A  is a functional of a process closely related to 

the empirical process, for which the asymptotic covariances are the same as 

2 2     2—1/2 
those for W , multiplied by w(s,t) = {(s-s )(t-t )}   .  The asymptotic 

distribution is then of type (4), with the weights A. calculated from (5) 

with the new covariances.  The functions f.(x) for case 0 are 
1 

P!(2x-l)  where P!(t)  are Ferrar associated Legendre functions, and the 

standard A.  is i(i+l).  Functions <}).(x)  and (J)„ (x)  are expanded in terms 

2 
of these f.(x)  to obtain the coefficients a.  and b. , as for W 

1 11 
2 

Solutions for A , case 1 are then the two sets given by A.,  i even and the 

solutions of S (A) = 0;  for case 2 they are A. ,  i odd, and the solutions 
3. 1 

of S, (A) =0> and for case 3 they are the solutions of S (A) = 0 and of 
b a 

S. (A) = 0. b 

2 
For U , the discussion is more complicated.  The statistic 

depends on the asymptotic process y(z) - 

this process for the various cases are then 

r1 

y(u)du.  The covariances of 
0 



Case 0: p (s,t) + a(s,t) 

Case 1: p (s,t) + a(s,t) 

Case 2: p (s,t) + a(s,t) 

Case 3: p (s,t) + a(s,t) 

(<|> (s) + /3/6) (^(t) + /3/6) 

4>2(s)«|)2(t) 

- (((> (s) + /3/6) (cj>1(t) + /3/6) 32(s)*2(t) 

where a(s,t) = 1/12 + {s(s-l) + t(t-l)}/2.  The asymptotic distribution 

of u  for a particular case is then of the type in equation (h)  with \^ 

calculated from (5) using the appropriate covariance. 

For case 0, the standard roots \.     are double roots with values 

X.   = k-a  i ,     and the corresponding eigenfunctions are f. (x) = /2sin (2nix) 

and f*(x) =-/2 cos (2itix). Then define 

fOO -co 

li = 4>x(x)   /2   sin(2TTix)   dx,   a*  = <j>   (x)   /2  cos(27Tix)   dx 
J-OO J_oo 

and 

with corresponding expressions, using  <f> (x) ,- for b. , b*  and S, (X) . 
•^ li       b 

2 
An analysis similar to that for W  now shows that standard roots  X. , 

for all  i , will occur once each in the solutions of D (X)S (X) =0 
0   a 

for case 1; another set is given by the solutions of S (X) = 0. 
a 

Similarly standard roots occur once in case 2, and another set is given 

by S (X) = 0.  For case 3,  for which again D„(X)S (X)S, (X) =0, only the 
D ü   a   b 

set  given by S (X) = 0 and by S,_(X) = 0 will be solutions, 
a D 



However, there is an interesting special result which for the 

logistic distribution (1) makes it unnecessary to perform some of the above 

2 
calculations for U  .  This follows because equation (2) may be written 

E. F(x.) = n/2;  thus in the notation of step (a), Section 2, we have 

— 22 Ä 

z = 0.5,   and so    W    = U   .     Equation   (2)   is  satisfied by    a and    (3     in 

case   1,  and by    a    and    ß    incase   3,   so for these cases     W    = U for 

all n , and therefore they have the same distributions.  The asymptotic 

2       2 
covariances for W  and U  become identical, as they should, when 

<j>1 (s) = /3 s(l-s) is inserted in these expressions.  Thus the theory for 

2 
U  needs to be worked out independently only for case 2. 

5.  CALCULATIONS OF EXACT MEANS AND VARIANCES. 

The cumulants K.  of the distribution (4) may be expressed in 

two ways: the first is 

K = 23   1(j-l):     p (s,s)ds, 
3 ) 0     J 

where  p (s,t) = p(s,t), and, for  j > 2, p.(s,t)  is defined by 

p.(s,t) =    p   (s,u) p(u,t)du . 
3 JQ J 

A second form for K.  is K. = 23~   (j-1) I   S.d/X.)-3 . 
3 J J     l   l 

From the first of these formulas the means and variances 

of the asymptotic distributions may be found, although the algebra, 

especially for the variances, is sometimes very tedious.  For example, 

for W , the mean u.  for case j  is u - A., where Ä. is 
3 0 3 3 

A. = 
3 

1 
4» (s)ds, (j = 1,2) , 

0  3 



and 

A3 = Al + A2 • 

2 
Evaluation of the  A  integrals gives for the four means of W  : 

1 2 
Li  = —, u, = 0.06667, u  = 0.14825, y„ = 0.048253.  For U , similar 
0   6   1 2. 3 

analysis gives  u = — , u = 0.06667,u = 0.06492, u = 0.048253.  The 

2       2 means of W  and U  are the same for cases 1 and 3, as they should be 

from the identity of the distributions noted above. 

2 
For A , corresponding calculations give the means U = 1, 

U  = 0.5, U = 0.84966, U  = 0.34966. 

Note that the series formula for K.  can be used, once the 
D 

weights  A..  are known, to find the cumulants to any order, whereas 

the integration needed for the first formula for K.  rapidly becomes 

prohibitive.  However the series for the mean K  converges very slowly, 

and it is worthwhile to calculate the exact means as was done above.  For 

higher values of j  the series converges more quickly and the weights 

maybe used to find the variances and higher cumulants.  In some cases, 

the variances were also calculated using the integrals, as a check on the 

calculations using the weights. 

6.  CALCULATION OF PERCENTAGE POINTS. 

When the  A.,  and the exact means are known for one of the 
l 

asymptotic distributions the percentage points of the distribution (4) can 

be found by several approximating techniques.  A common method for finding 

2 
the distribution of the sum of weighted X  variables is  Imhof's (1961) 

method, which has been adapted by Durbin & Knott (1972) for the case of an 

infinite sum.  Alternatively the first four cumulants can be found and 

Pearson curves fitted to the data.  In terms of a-values the points given 

10 



by this method differ negligibly from those given by Imhof's method, and 

the latter are those quoted in Table 1.   Points for case 0 are included 

to show how much the percentage points drop in the other cases; they demonstrate 

how important it is to use the correct values for the appropriate 

case. 

For the percentage points of the various statistics for finite n , 

Monte Carlo studies were made, with n = 5, 8, 10, 20 and 50;  10,000 samples 

were used for each case.  Previous experience with these statistics (Stephens, 

1974, 1977) suggests that convergence to the asymptotic points will be rapid, 

and a plot of percentage points against 1/n proves this to be so.  The Monte 

Carlo points were used to calculate the modified forms given in Table 1; it 

can be seen that several models were employed to connect the percentage point 

of a test statistic for sample size n with its asymptotic point.   It is 

believed that use of these modifications and the appropriate asymptotic point 

will give an error in a always less than 0.5%, for the upper tail given, and 

for n > 5 . 

7.  KOLMOGOROV-SMIFNOV STATISTICS 

Another important group of EDF statistics contains those 

associated with the names of Kolmogorov, Smirnov and Kuiper; these are 

statistics D , D , D and V defined in terms of the z.  of section 2 as 

follows: 

D = max. (i/n - z .) ;   D = max. {z. -  } ; 
l       l l  l   n 

D = max(D , D_);      V = D + D~ 

11 



2   2 
The first three of these are older than statistics W , U  and 

2 
A , and have attracted more attention.  Statistic V was introduced by 

Kuiper for observations on a circle, since the value of V , like that of 

2 
U , is independent of the choice of origin; both statistics can also be used 

for observations on a line.  Although asymptotic distribution theory cannot 

be offered for these statistics for the cases 1, 2, and 3 of this paper, 

2  2       2 
Monte Carlo results were obtained at the same time as for W , U  and A 

The percentage points of  /nD , /nD and /nV are given in Table 2.  Points 

for /nD  can be used also for /nD  .  For each statistic and case, the 

Monte Carlo percentage point at level a was plotted against 1/n and 

smoothed to give the points in the table.  The asymptotic values are found 

by extrapolation, and the accuracy is therefore somewhat difficult to determine. In 

other goodness-of-fit situations (see, e.g. Stephens, 1974) these 

2  2      2 
statistics have been found to be less powerful than W , U  or A  , and 

so they are not particularly recommended.  However, the points are included 

because these statistics often have a pictorial appeal to practical users, 

and D  in particular is very well known; also D  and D  enable one-sided 

tests to be made.  The values will also be of interest to statisticians working 

in this field, particularly if asymptotic results later become available. 

This work was supported by the National Research Council of Canada and 

the U.S. Office of Naval Research, and this assistance is gratefully 

acknowledged.  He also thanks Mr. K.W. Chung for help with computations. 
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